💯Go Struct and Field validation, including Cross Field, Cross Struct, Map, Slice and Array diving
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
validator/baked_in.go

1723 lines
44 KiB

package validator
import (
"context"
"fmt"
"net"
"net/url"
"reflect"
"strconv"
"strings"
"sync"
"time"
"unicode/utf8"
"crypto/sha256"
"bytes"
)
// Func accepts a FieldLevel interface for all validation needs. The return
// value should be true when validation succeeds.
type Func func(fl FieldLevel) bool
// FuncCtx accepts a context.Context and FieldLevel interface for all
// validation needs. The return value should be true when validation succeeds.
type FuncCtx func(ctx context.Context, fl FieldLevel) bool
// wrapFunc wraps noramal Func makes it compatible with FuncCtx
func wrapFunc(fn Func) FuncCtx {
if fn == nil {
return nil // be sure not to wrap a bad function.
}
return func(ctx context.Context, fl FieldLevel) bool {
return fn(fl)
}
}
var (
restrictedTags = map[string]struct{}{
diveTag: {},
keysTag: {},
endKeysTag: {},
structOnlyTag: {},
omitempty: {},
skipValidationTag: {},
utf8HexComma: {},
utf8Pipe: {},
noStructLevelTag: {},
requiredTag: {},
isdefault: {},
}
// BakedInAliasValidators is a default mapping of a single validation tag that
// defines a common or complex set of validation(s) to simplify
// adding validation to structs.
bakedInAliases = map[string]string{
"iscolor": "hexcolor|rgb|rgba|hsl|hsla",
}
// BakedInValidators is the default map of ValidationFunc
// you can add, remove or even replace items to suite your needs,
// or even disregard and use your own map if so desired.
bakedInValidators = map[string]Func{
"required": hasValue,
"isdefault": isDefault,
"len": hasLengthOf,
"min": hasMinOf,
"max": hasMaxOf,
"eq": isEq,
"ne": isNe,
"lt": isLt,
"lte": isLte,
"gt": isGt,
"gte": isGte,
"eqfield": isEqField,
"eqcsfield": isEqCrossStructField,
"necsfield": isNeCrossStructField,
"gtcsfield": isGtCrossStructField,
"gtecsfield": isGteCrossStructField,
"ltcsfield": isLtCrossStructField,
"ltecsfield": isLteCrossStructField,
"nefield": isNeField,
"gtefield": isGteField,
"gtfield": isGtField,
"ltefield": isLteField,
"ltfield": isLtField,
"alpha": isAlpha,
"alphanum": isAlphanum,
"alphaunicode": isAlphaUnicode,
"alphanumunicode": isAlphanumUnicode,
"numeric": isNumeric,
"number": isNumber,
"hexadecimal": isHexadecimal,
"hexcolor": isHEXColor,
"rgb": isRGB,
"rgba": isRGBA,
"hsl": isHSL,
"hsla": isHSLA,
"email": isEmail,
"url": isURL,
"uri": isURI,
"base64": isBase64,
"base64url": isBase64URL,
"contains": contains,
"containsany": containsAny,
"containsrune": containsRune,
"excludes": excludes,
"excludesall": excludesAll,
"excludesrune": excludesRune,
"isbn": isISBN,
"isbn10": isISBN10,
"isbn13": isISBN13,
"eth_addr": isEthereumAddress,
"btc_addr": isBitcoinAddress,
"btc_addr_bech32": isBitcoinBech32Address,
"uuid": isUUID,
"uuid3": isUUID3,
"uuid4": isUUID4,
"uuid5": isUUID5,
"ascii": isASCII,
"printascii": isPrintableASCII,
"multibyte": hasMultiByteCharacter,
"datauri": isDataURI,
"latitude": isLatitude,
"longitude": isLongitude,
"ssn": isSSN,
"ipv4": isIPv4,
"ipv6": isIPv6,
"ip": isIP,
"cidrv4": isCIDRv4,
"cidrv6": isCIDRv6,
"cidr": isCIDR,
"tcp4_addr": isTCP4AddrResolvable,
"tcp6_addr": isTCP6AddrResolvable,
"tcp_addr": isTCPAddrResolvable,
"udp4_addr": isUDP4AddrResolvable,
"udp6_addr": isUDP6AddrResolvable,
"udp_addr": isUDPAddrResolvable,
"ip4_addr": isIP4AddrResolvable,
"ip6_addr": isIP6AddrResolvable,
"ip_addr": isIPAddrResolvable,
"unix_addr": isUnixAddrResolvable,
"mac": isMAC,
"hostname": isHostnameRFC952, // RFC 952
"hostname_rfc1123": isHostnameRFC1123, // RFC 1123
"fqdn": isFQDN,
"unique": isUnique,
"oneof": isOneOf,
}
)
var oneofValsCache = map[string][]string{}
var oneofValsCacheRWLock = sync.RWMutex{}
func parseOneOfParam2(s string) []string {
oneofValsCacheRWLock.RLock()
vals, ok := oneofValsCache[s]
oneofValsCacheRWLock.RUnlock()
if !ok {
oneofValsCacheRWLock.Lock()
vals = strings.Fields(s)
oneofValsCache[s] = vals
oneofValsCacheRWLock.Unlock()
}
return vals
}
func isOneOf(fl FieldLevel) bool {
vals := parseOneOfParam2(fl.Param())
field := fl.Field()
var v string
switch field.Kind() {
case reflect.String:
v = field.String()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
v = strconv.FormatInt(field.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
v = strconv.FormatUint(field.Uint(), 10)
default:
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
for i := 0; i < len(vals); i++ {
if vals[i] == v {
return true
}
}
return false
}
// isUnique is the validation function for validating if each array|slice element is unique
func isUnique(fl FieldLevel) bool {
field := fl.Field()
v := reflect.ValueOf(struct{}{})
switch field.Kind() {
case reflect.Slice, reflect.Array:
m := reflect.MakeMap(reflect.MapOf(fl.Field().Type().Elem(), v.Type()))
for i := 0; i < field.Len(); i++ {
m.SetMapIndex(field.Index(i), v)
}
return field.Len() == m.Len()
default:
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
}
// IsMAC is the validation function for validating if the field's value is a valid MAC address.
func isMAC(fl FieldLevel) bool {
_, err := net.ParseMAC(fl.Field().String())
return err == nil
}
// IsCIDRv4 is the validation function for validating if the field's value is a valid v4 CIDR address.
func isCIDRv4(fl FieldLevel) bool {
ip, _, err := net.ParseCIDR(fl.Field().String())
return err == nil && ip.To4() != nil
}
// IsCIDRv6 is the validation function for validating if the field's value is a valid v6 CIDR address.
func isCIDRv6(fl FieldLevel) bool {
ip, _, err := net.ParseCIDR(fl.Field().String())
return err == nil && ip.To4() == nil
}
// IsCIDR is the validation function for validating if the field's value is a valid v4 or v6 CIDR address.
func isCIDR(fl FieldLevel) bool {
_, _, err := net.ParseCIDR(fl.Field().String())
return err == nil
}
// IsIPv4 is the validation function for validating if a value is a valid v4 IP address.
func isIPv4(fl FieldLevel) bool {
ip := net.ParseIP(fl.Field().String())
return ip != nil && ip.To4() != nil
}
// IsIPv6 is the validation function for validating if the field's value is a valid v6 IP address.
func isIPv6(fl FieldLevel) bool {
ip := net.ParseIP(fl.Field().String())
return ip != nil && ip.To4() == nil
}
// IsIP is the validation function for validating if the field's value is a valid v4 or v6 IP address.
func isIP(fl FieldLevel) bool {
ip := net.ParseIP(fl.Field().String())
return ip != nil
}
// IsSSN is the validation function for validating if the field's value is a valid SSN.
func isSSN(fl FieldLevel) bool {
field := fl.Field()
if field.Len() != 11 {
return false
}
return sSNRegex.MatchString(field.String())
}
// IsLongitude is the validation function for validating if the field's value is a valid longitude coordinate.
func isLongitude(fl FieldLevel) bool {
return longitudeRegex.MatchString(fl.Field().String())
}
// IsLatitude is the validation function for validating if the field's value is a valid latitude coordinate.
func isLatitude(fl FieldLevel) bool {
return latitudeRegex.MatchString(fl.Field().String())
}
// IsDataURI is the validation function for validating if the field's value is a valid data URI.
func isDataURI(fl FieldLevel) bool {
uri := strings.SplitN(fl.Field().String(), ",", 2)
if len(uri) != 2 {
return false
}
if !dataURIRegex.MatchString(uri[0]) {
return false
}
return base64Regex.MatchString(uri[1])
}
// HasMultiByteCharacter is the validation function for validating if the field's value has a multi byte character.
func hasMultiByteCharacter(fl FieldLevel) bool {
field := fl.Field()
if field.Len() == 0 {
return true
}
return multibyteRegex.MatchString(field.String())
}
// IsPrintableASCII is the validation function for validating if the field's value is a valid printable ASCII character.
func isPrintableASCII(fl FieldLevel) bool {
return printableASCIIRegex.MatchString(fl.Field().String())
}
// IsASCII is the validation function for validating if the field's value is a valid ASCII character.
func isASCII(fl FieldLevel) bool {
return aSCIIRegex.MatchString(fl.Field().String())
}
// IsUUID5 is the validation function for validating if the field's value is a valid v5 UUID.
func isUUID5(fl FieldLevel) bool {
return uUID5Regex.MatchString(fl.Field().String())
}
// IsUUID4 is the validation function for validating if the field's value is a valid v4 UUID.
func isUUID4(fl FieldLevel) bool {
return uUID4Regex.MatchString(fl.Field().String())
}
// IsUUID3 is the validation function for validating if the field's value is a valid v3 UUID.
func isUUID3(fl FieldLevel) bool {
return uUID3Regex.MatchString(fl.Field().String())
}
// IsUUID is the validation function for validating if the field's value is a valid UUID of any version.
func isUUID(fl FieldLevel) bool {
return uUIDRegex.MatchString(fl.Field().String())
}
// IsISBN is the validation function for validating if the field's value is a valid v10 or v13 ISBN.
func isISBN(fl FieldLevel) bool {
return isISBN10(fl) || isISBN13(fl)
}
// IsISBN13 is the validation function for validating if the field's value is a valid v13 ISBN.
func isISBN13(fl FieldLevel) bool {
s := strings.Replace(strings.Replace(fl.Field().String(), "-", "", 4), " ", "", 4)
if !iSBN13Regex.MatchString(s) {
return false
}
var checksum int32
var i int32
factor := []int32{1, 3}
for i = 0; i < 12; i++ {
checksum += factor[i%2] * int32(s[i]-'0')
}
return (int32(s[12]-'0'))-((10-(checksum%10))%10) == 0
}
// IsISBN10 is the validation function for validating if the field's value is a valid v10 ISBN.
func isISBN10(fl FieldLevel) bool {
s := strings.Replace(strings.Replace(fl.Field().String(), "-", "", 3), " ", "", 3)
if !iSBN10Regex.MatchString(s) {
return false
}
var checksum int32
var i int32
for i = 0; i < 9; i++ {
checksum += (i + 1) * int32(s[i]-'0')
}
if s[9] == 'X' {
checksum += 10 * 10
} else {
checksum += 10 * int32(s[9]-'0')
}
return checksum%11 == 0
}
// IsEthereumAddress is the validation function for validating if the field's value is a valid ethereum address based currently only on the format
func isEthereumAddress(fl FieldLevel) bool {
address := fl.Field().String()
if !ethAddressRegex.MatchString(address) {
return false
}
if ethaddressRegexUpper.MatchString(address) || ethAddressRegexLower.MatchString(address) {
return true
}
// checksum validation is blocked by https://github.com/golang/crypto/pull/28
return true
}
// IsBitcoinAddress is the validation function for validating if the field's value is a valid btc address
func isBitcoinAddress(fl FieldLevel) bool {
address := fl.Field().String()
if !btcAddressRegex.MatchString(address) {
return false
}
alphabet := []byte("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")
decode := [25]byte{}
for _, n := range []byte(address) {
d := bytes.IndexByte(alphabet, n)
for i := 24; i >= 0; i-- {
d += 58 * int(decode[i])
decode[i] = byte(d % 256)
d /= 256
}
}
h := sha256.New()
h.Write(decode[:21])
d := h.Sum([]byte{})
h = sha256.New()
h.Write(d)
validchecksum := [4]byte{}
computedchecksum := [4]byte{}
copy(computedchecksum[:], h.Sum(d[:0]))
copy(validchecksum[:], decode[21:])
return validchecksum == computedchecksum
}
// IsBitcoinBech32Address is the validation function for validating if the field's value is a valid bech32 btc address
func isBitcoinBech32Address(fl FieldLevel) bool {
address := fl.Field().String()
if !btcLowerAddressRegexBech32.MatchString(address) && !btcUpperAddressRegexBech32.MatchString(address){
return false
}
am := len(address) % 8
if am == 0 || am == 3 || am == 5{
return false
}
address = strings.ToLower(address)
alphabet := "qpzry9x8gf2tvdw0s3jn54khce6mua7l"
hr := []int{3, 3, 0, 2, 3} // the human readable part will always be bc
dp := []int{}
for _, c := range []rune(address[3:]) {
dp = append(dp, strings.IndexRune(alphabet, c))
}
ver := dp[0]
if ver < 0 || ver > 16{
return false
}
if ver == 0 {
if len(address) != 42 && len(address) != 62 {
return false
}
}
values := append(hr, dp...)
GEN := []int{ 0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3 }
p := 1
for _, v := range values {
b := p >> 25
p = (p & 0x1ffffff) << 5 ^ v
for i := 0; i < 5; i++ {
if (b >> uint(i)) & 1 == 1 {
p ^= GEN[i]
}
}
}
if p != 1 {
return false
}
b := uint(0)
acc := 0
mv := (1 << 5) - 1
sw := []int{}
for _, v := range dp[1:len(dp) - 6]{
acc = (acc << 5) | v
b += 5
for b >= 8{
b -= 8
sw = append(sw, (acc>>b)&mv)
}
}
if len(sw) < 2 || len(sw) > 40{
return false
}
return true
}
// ExcludesRune is the validation function for validating that the field's value does not contain the rune specified within the param.
func excludesRune(fl FieldLevel) bool {
return !containsRune(fl)
}
// ExcludesAll is the validation function for validating that the field's value does not contain any of the characters specified within the param.
func excludesAll(fl FieldLevel) bool {
return !containsAny(fl)
}
// Excludes is the validation function for validating that the field's value does not contain the text specified within the param.
func excludes(fl FieldLevel) bool {
return !contains(fl)
}
// ContainsRune is the validation function for validating that the field's value contains the rune specified within the param.
func containsRune(fl FieldLevel) bool {
r, _ := utf8.DecodeRuneInString(fl.Param())
return strings.ContainsRune(fl.Field().String(), r)
}
// ContainsAny is the validation function for validating that the field's value contains any of the characters specified within the param.
func containsAny(fl FieldLevel) bool {
return strings.ContainsAny(fl.Field().String(), fl.Param())
}
// Contains is the validation function for validating that the field's value contains the text specified within the param.
func contains(fl FieldLevel) bool {
return strings.Contains(fl.Field().String(), fl.Param())
}
// IsNeField is the validation function for validating if the current field's value is not equal to the field specified by the param's value.
func isNeField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return true
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() != currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() != currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() != currentField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) != int64(currentField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return true
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return !fieldTime.Equal(t)
}
}
// default reflect.String:
return field.String() != currentField.String()
}
// IsNe is the validation function for validating that the field's value does not equal the provided param value.
func isNe(fl FieldLevel) bool {
return !isEq(fl)
}
// IsLteCrossStructField is the validation function for validating if the current field's value is less than or equal to the field, within a separate struct, specified by the param's value.
func isLteCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, topKind, ok := fl.GetStructFieldOK()
if !ok || topKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() <= topField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() <= topField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() <= topField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) <= int64(topField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return false
}
if fieldType == timeType {
fieldTime := field.Interface().(time.Time)
topTime := topField.Interface().(time.Time)
return fieldTime.Before(topTime) || fieldTime.Equal(topTime)
}
}
// default reflect.String:
return field.String() <= topField.String()
}
// IsLtCrossStructField is the validation function for validating if the current field's value is less than the field, within a separate struct, specified by the param's value.
// NOTE: This is exposed for use within your own custom functions and not intended to be called directly.
func isLtCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, topKind, ok := fl.GetStructFieldOK()
if !ok || topKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() < topField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() < topField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() < topField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) < int64(topField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return false
}
if fieldType == timeType {
fieldTime := field.Interface().(time.Time)
topTime := topField.Interface().(time.Time)
return fieldTime.Before(topTime)
}
}
// default reflect.String:
return field.String() < topField.String()
}
// IsGteCrossStructField is the validation function for validating if the current field's value is greater than or equal to the field, within a separate struct, specified by the param's value.
func isGteCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, topKind, ok := fl.GetStructFieldOK()
if !ok || topKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() >= topField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() >= topField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() >= topField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) >= int64(topField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return false
}
if fieldType == timeType {
fieldTime := field.Interface().(time.Time)
topTime := topField.Interface().(time.Time)
return fieldTime.After(topTime) || fieldTime.Equal(topTime)
}
}
// default reflect.String:
return field.String() >= topField.String()
}
// IsGtCrossStructField is the validation function for validating if the current field's value is greater than the field, within a separate struct, specified by the param's value.
func isGtCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, topKind, ok := fl.GetStructFieldOK()
if !ok || topKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() > topField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() > topField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() > topField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) > int64(topField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return false
}
if fieldType == timeType {
fieldTime := field.Interface().(time.Time)
topTime := topField.Interface().(time.Time)
return fieldTime.After(topTime)
}
}
// default reflect.String:
return field.String() > topField.String()
}
// IsNeCrossStructField is the validation function for validating that the current field's value is not equal to the field, within a separate struct, specified by the param's value.
func isNeCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return true
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return topField.Int() != field.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return topField.Uint() != field.Uint()
case reflect.Float32, reflect.Float64:
return topField.Float() != field.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(topField.Len()) != int64(field.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return true
}
if fieldType == timeType {
t := field.Interface().(time.Time)
fieldTime := topField.Interface().(time.Time)
return !fieldTime.Equal(t)
}
}
// default reflect.String:
return topField.String() != field.String()
}
// IsEqCrossStructField is the validation function for validating that the current field's value is equal to the field, within a separate struct, specified by the param's value.
func isEqCrossStructField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
topField, topKind, ok := fl.GetStructFieldOK()
if !ok || topKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return topField.Int() == field.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return topField.Uint() == field.Uint()
case reflect.Float32, reflect.Float64:
return topField.Float() == field.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(topField.Len()) == int64(field.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != topField.Type() {
return false
}
if fieldType == timeType {
t := field.Interface().(time.Time)
fieldTime := topField.Interface().(time.Time)
return fieldTime.Equal(t)
}
}
// default reflect.String:
return topField.String() == field.String()
}
// IsEqField is the validation function for validating if the current field's value is equal to the field specified by the param's value.
func isEqField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() == currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() == currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() == currentField.Float()
case reflect.Slice, reflect.Map, reflect.Array:
return int64(field.Len()) == int64(currentField.Len())
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return false
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return fieldTime.Equal(t)
}
}
// default reflect.String:
return field.String() == currentField.String()
}
// IsEq is the validation function for validating if the current field's value is equal to the param's value.
func isEq(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
return field.String() == param
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) == p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() == p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() == p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() == p
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// IsBase64 is the validation function for validating if the current field's value is a valid base 64.
func isBase64(fl FieldLevel) bool {
return base64Regex.MatchString(fl.Field().String())
}
// IsBase64URL is the validation function for validating if the current field's value is a valid base64 URL safe string.
func isBase64URL(fl FieldLevel) bool {
return base64URLRegex.MatchString(fl.Field().String())
}
// IsURI is the validation function for validating if the current field's value is a valid URI.
func isURI(fl FieldLevel) bool {
field := fl.Field()
switch field.Kind() {
case reflect.String:
s := field.String()
// checks needed as of Go 1.6 because of change https://github.com/golang/go/commit/617c93ce740c3c3cc28cdd1a0d712be183d0b328#diff-6c2d018290e298803c0c9419d8739885L195
// emulate browser and strip the '#' suffix prior to validation. see issue-#237
if i := strings.Index(s, "#"); i > -1 {
s = s[:i]
}
if len(s) == 0 {
return false
}
_, err := url.ParseRequestURI(s)
return err == nil
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// IsURL is the validation function for validating if the current field's value is a valid URL.
func isURL(fl FieldLevel) bool {
field := fl.Field()
switch field.Kind() {
case reflect.String:
var i int
s := field.String()
// checks needed as of Go 1.6 because of change https://github.com/golang/go/commit/617c93ce740c3c3cc28cdd1a0d712be183d0b328#diff-6c2d018290e298803c0c9419d8739885L195
// emulate browser and strip the '#' suffix prior to validation. see issue-#237
if i = strings.Index(s, "#"); i > -1 {
s = s[:i]
}
if len(s) == 0 {
return false
}
url, err := url.ParseRequestURI(s)
if err != nil || url.Scheme == "" {
return false
}
return err == nil
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// IsEmail is the validation function for validating if the current field's value is a valid email address.
func isEmail(fl FieldLevel) bool {
return emailRegex.MatchString(fl.Field().String())
}
// IsHSLA is the validation function for validating if the current field's value is a valid HSLA color.
func isHSLA(fl FieldLevel) bool {
return hslaRegex.MatchString(fl.Field().String())
}
// IsHSL is the validation function for validating if the current field's value is a valid HSL color.
func isHSL(fl FieldLevel) bool {
return hslRegex.MatchString(fl.Field().String())
}
// IsRGBA is the validation function for validating if the current field's value is a valid RGBA color.
func isRGBA(fl FieldLevel) bool {
return rgbaRegex.MatchString(fl.Field().String())
}
// IsRGB is the validation function for validating if the current field's value is a valid RGB color.
func isRGB(fl FieldLevel) bool {
return rgbRegex.MatchString(fl.Field().String())
}
// IsHEXColor is the validation function for validating if the current field's value is a valid HEX color.
func isHEXColor(fl FieldLevel) bool {
return hexcolorRegex.MatchString(fl.Field().String())
}
// IsHexadecimal is the validation function for validating if the current field's value is a valid hexadecimal.
func isHexadecimal(fl FieldLevel) bool {
return hexadecimalRegex.MatchString(fl.Field().String())
}
// IsNumber is the validation function for validating if the current field's value is a valid number.
func isNumber(fl FieldLevel) bool {
return numberRegex.MatchString(fl.Field().String())
}
// IsNumeric is the validation function for validating if the current field's value is a valid numeric value.
func isNumeric(fl FieldLevel) bool {
return numericRegex.MatchString(fl.Field().String())
}
// IsAlphanum is the validation function for validating if the current field's value is a valid alphanumeric value.
func isAlphanum(fl FieldLevel) bool {
return alphaNumericRegex.MatchString(fl.Field().String())
}
// IsAlpha is the validation function for validating if the current field's value is a valid alpha value.
func isAlpha(fl FieldLevel) bool {
return alphaRegex.MatchString(fl.Field().String())
}
// IsAlphanumUnicode is the validation function for validating if the current field's value is a valid alphanumeric unicode value.
func isAlphanumUnicode(fl FieldLevel) bool {
return alphaUnicodeNumericRegex.MatchString(fl.Field().String())
}
// IsAlphaUnicode is the validation function for validating if the current field's value is a valid alpha unicode value.
func isAlphaUnicode(fl FieldLevel) bool {
return alphaUnicodeRegex.MatchString(fl.Field().String())
}
// isDefault is the opposite of required aka hasValue
func isDefault(fl FieldLevel) bool {
return !hasValue(fl)
}
// HasValue is the validation function for validating if the current field's value is not the default static value.
func hasValue(fl FieldLevel) bool {
field := fl.Field()
switch field.Kind() {
case reflect.Slice, reflect.Map, reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func:
return !field.IsNil()
default:
if fl.(*validate).fldIsPointer && field.Interface() != nil {
return true
}
return field.IsValid() && field.Interface() != reflect.Zero(field.Type()).Interface()
}
}
// IsGteField is the validation function for validating if the current field's value is greater than or equal to the field specified by the param's value.
func isGteField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() >= currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() >= currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() >= currentField.Float()
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return false
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return fieldTime.After(t) || fieldTime.Equal(t)
}
}
// default reflect.String
return len(field.String()) >= len(currentField.String())
}
// IsGtField is the validation function for validating if the current field's value is greater than the field specified by the param's value.
func isGtField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() > currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() > currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() > currentField.Float()
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return false
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return fieldTime.After(t)
}
}
// default reflect.String
return len(field.String()) > len(currentField.String())
}
// IsGte is the validation function for validating if the current field's value is greater than or equal to the param's value.
func isGte(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
p := asInt(param)
return int64(utf8.RuneCountInString(field.String())) >= p
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) >= p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() >= p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() >= p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() >= p
case reflect.Struct:
if field.Type() == timeType {
now := time.Now().UTC()
t := field.Interface().(time.Time)
return t.After(now) || t.Equal(now)
}
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// IsGt is the validation function for validating if the current field's value is greater than the param's value.
func isGt(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
p := asInt(param)
return int64(utf8.RuneCountInString(field.String())) > p
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) > p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() > p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() > p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() > p
case reflect.Struct:
if field.Type() == timeType {
return field.Interface().(time.Time).After(time.Now().UTC())
}
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// HasLengthOf is the validation function for validating if the current field's value is equal to the param's value.
func hasLengthOf(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
p := asInt(param)
return int64(utf8.RuneCountInString(field.String())) == p
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) == p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() == p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() == p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() == p
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// HasMinOf is the validation function for validating if the current field's value is greater than or equal to the param's value.
func hasMinOf(fl FieldLevel) bool {
return isGte(fl)
}
// IsLteField is the validation function for validating if the current field's value is less than or equal to the field specified by the param's value.
func isLteField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() <= currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() <= currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() <= currentField.Float()
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return false
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return fieldTime.Before(t) || fieldTime.Equal(t)
}
}
// default reflect.String
return len(field.String()) <= len(currentField.String())
}
// IsLtField is the validation function for validating if the current field's value is less than the field specified by the param's value.
func isLtField(fl FieldLevel) bool {
field := fl.Field()
kind := field.Kind()
currentField, currentKind, ok := fl.GetStructFieldOK()
if !ok || currentKind != kind {
return false
}
switch kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return field.Int() < currentField.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return field.Uint() < currentField.Uint()
case reflect.Float32, reflect.Float64:
return field.Float() < currentField.Float()
case reflect.Struct:
fieldType := field.Type()
// Not Same underlying type i.e. struct and time
if fieldType != currentField.Type() {
return false
}
if fieldType == timeType {
t := currentField.Interface().(time.Time)
fieldTime := field.Interface().(time.Time)
return fieldTime.Before(t)
}
}
// default reflect.String
return len(field.String()) < len(currentField.String())
}
// IsLte is the validation function for validating if the current field's value is less than or equal to the param's value.
func isLte(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
p := asInt(param)
return int64(utf8.RuneCountInString(field.String())) <= p
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) <= p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() <= p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() <= p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() <= p
case reflect.Struct:
if field.Type() == timeType {
now := time.Now().UTC()
t := field.Interface().(time.Time)
return t.Before(now) || t.Equal(now)
}
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// IsLt is the validation function for validating if the current field's value is less than the param's value.
func isLt(fl FieldLevel) bool {
field := fl.Field()
param := fl.Param()
switch field.Kind() {
case reflect.String:
p := asInt(param)
return int64(utf8.RuneCountInString(field.String())) < p
case reflect.Slice, reflect.Map, reflect.Array:
p := asInt(param)
return int64(field.Len()) < p
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p := asInt(param)
return field.Int() < p
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p := asUint(param)
return field.Uint() < p
case reflect.Float32, reflect.Float64:
p := asFloat(param)
return field.Float() < p
case reflect.Struct:
if field.Type() == timeType {
return field.Interface().(time.Time).Before(time.Now().UTC())
}
}
panic(fmt.Sprintf("Bad field type %T", field.Interface()))
}
// HasMaxOf is the validation function for validating if the current field's value is less than or equal to the param's value.
func hasMaxOf(fl FieldLevel) bool {
return isLte(fl)
}
// IsTCP4AddrResolvable is the validation function for validating if the field's value is a resolvable tcp4 address.
func isTCP4AddrResolvable(fl FieldLevel) bool {
if !isIP4Addr(fl) {
return false
}
_, err := net.ResolveTCPAddr("tcp4", fl.Field().String())
return err == nil
}
// IsTCP6AddrResolvable is the validation function for validating if the field's value is a resolvable tcp6 address.
func isTCP6AddrResolvable(fl FieldLevel) bool {
if !isIP6Addr(fl) {
return false
}
_, err := net.ResolveTCPAddr("tcp6", fl.Field().String())
return err == nil
}
// IsTCPAddrResolvable is the validation function for validating if the field's value is a resolvable tcp address.
func isTCPAddrResolvable(fl FieldLevel) bool {
if !isIP4Addr(fl) && !isIP6Addr(fl) {
return false
}
_, err := net.ResolveTCPAddr("tcp", fl.Field().String())
return err == nil
}
// IsUDP4AddrResolvable is the validation function for validating if the field's value is a resolvable udp4 address.
func isUDP4AddrResolvable(fl FieldLevel) bool {
if !isIP4Addr(fl) {
return false
}
_, err := net.ResolveUDPAddr("udp4", fl.Field().String())
return err == nil
}
// IsUDP6AddrResolvable is the validation function for validating if the field's value is a resolvable udp6 address.
func isUDP6AddrResolvable(fl FieldLevel) bool {
if !isIP6Addr(fl) {
return false
}
_, err := net.ResolveUDPAddr("udp6", fl.Field().String())
return err == nil
}
// IsUDPAddrResolvable is the validation function for validating if the field's value is a resolvable udp address.
func isUDPAddrResolvable(fl FieldLevel) bool {
if !isIP4Addr(fl) && !isIP6Addr(fl) {
return false
}
_, err := net.ResolveUDPAddr("udp", fl.Field().String())
return err == nil
}
// IsIP4AddrResolvable is the validation function for validating if the field's value is a resolvable ip4 address.
func isIP4AddrResolvable(fl FieldLevel) bool {
if !isIPv4(fl) {
return false
}
_, err := net.ResolveIPAddr("ip4", fl.Field().String())
return err == nil
}
// IsIP6AddrResolvable is the validation function for validating if the field's value is a resolvable ip6 address.
func isIP6AddrResolvable(fl FieldLevel) bool {
if !isIPv6(fl) {
return false
}
_, err := net.ResolveIPAddr("ip6", fl.Field().String())
return err == nil
}
// IsIPAddrResolvable is the validation function for validating if the field's value is a resolvable ip address.
func isIPAddrResolvable(fl FieldLevel) bool {
if !isIP(fl) {
return false
}
_, err := net.ResolveIPAddr("ip", fl.Field().String())
return err == nil
}
// IsUnixAddrResolvable is the validation function for validating if the field's value is a resolvable unix address.
func isUnixAddrResolvable(fl FieldLevel) bool {
_, err := net.ResolveUnixAddr("unix", fl.Field().String())
return err == nil
}
func isIP4Addr(fl FieldLevel) bool {
val := fl.Field().String()
if idx := strings.LastIndex(val, ":"); idx != -1 {
val = val[0:idx]
}
ip := net.ParseIP(val)
return ip != nil && ip.To4() != nil
}
func isIP6Addr(fl FieldLevel) bool {
val := fl.Field().String()
if idx := strings.LastIndex(val, ":"); idx != -1 {
if idx != 0 && val[idx-1:idx] == "]" {
val = val[1 : idx-1]
}
}
ip := net.ParseIP(val)
return ip != nil && ip.To4() == nil
}
func isHostnameRFC952(fl FieldLevel) bool {
return hostnameRegexRFC952.MatchString(fl.Field().String())
}
func isHostnameRFC1123(fl FieldLevel) bool {
return hostnameRegexRFC1123.MatchString(fl.Field().String())
}
func isFQDN(fl FieldLevel) bool {
val := fl.Field().String()
if val == "" {
return false
}
if val[len(val)-1] == '.' {
val = val[0 : len(val)-1]
}
return strings.ContainsAny(val, ".") &&
hostnameRegexRFC952.MatchString(val)
}