kratos/examples/blog/internal/data/ent/comment/where.go

556 lines
16 KiB

// Code generated by entc, DO NOT EDIT.
package comment
import (
"time"
"entgo.io/ent/dialect/sql"
"entgo.io/ent/dialect/sql/sqlgraph"
"github.com/go-kratos/kratos/examples/blog/internal/data/ent/predicate"
)
// ID filters vertices based on their ID field.
func ID(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id int64) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// Name applies equality check predicate on the "name" field. It's identical to NameEQ.
func Name(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// Content applies equality check predicate on the "content" field. It's identical to ContentEQ.
func Content(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldContent), v))
})
}
// CreatedAt applies equality check predicate on the "created_at" field. It's identical to CreatedAtEQ.
func CreatedAt(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldCreatedAt), v))
})
}
// UpdatedAt applies equality check predicate on the "updated_at" field. It's identical to UpdatedAtEQ.
func UpdatedAt(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldUpdatedAt), v))
})
}
// NameEQ applies the EQ predicate on the "name" field.
func NameEQ(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// NameNEQ applies the NEQ predicate on the "name" field.
func NameNEQ(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldName), v))
})
}
// NameIn applies the In predicate on the "name" field.
func NameIn(vs ...string) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldName), v...))
})
}
// NameNotIn applies the NotIn predicate on the "name" field.
func NameNotIn(vs ...string) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldName), v...))
})
}
// NameGT applies the GT predicate on the "name" field.
func NameGT(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldName), v))
})
}
// NameGTE applies the GTE predicate on the "name" field.
func NameGTE(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldName), v))
})
}
// NameLT applies the LT predicate on the "name" field.
func NameLT(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldName), v))
})
}
// NameLTE applies the LTE predicate on the "name" field.
func NameLTE(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldName), v))
})
}
// NameContains applies the Contains predicate on the "name" field.
func NameContains(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.Contains(s.C(FieldName), v))
})
}
// NameHasPrefix applies the HasPrefix predicate on the "name" field.
func NameHasPrefix(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.HasPrefix(s.C(FieldName), v))
})
}
// NameHasSuffix applies the HasSuffix predicate on the "name" field.
func NameHasSuffix(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.HasSuffix(s.C(FieldName), v))
})
}
// NameEqualFold applies the EqualFold predicate on the "name" field.
func NameEqualFold(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EqualFold(s.C(FieldName), v))
})
}
// NameContainsFold applies the ContainsFold predicate on the "name" field.
func NameContainsFold(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.ContainsFold(s.C(FieldName), v))
})
}
// ContentEQ applies the EQ predicate on the "content" field.
func ContentEQ(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldContent), v))
})
}
// ContentNEQ applies the NEQ predicate on the "content" field.
func ContentNEQ(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldContent), v))
})
}
// ContentIn applies the In predicate on the "content" field.
func ContentIn(vs ...string) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldContent), v...))
})
}
// ContentNotIn applies the NotIn predicate on the "content" field.
func ContentNotIn(vs ...string) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldContent), v...))
})
}
// ContentGT applies the GT predicate on the "content" field.
func ContentGT(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldContent), v))
})
}
// ContentGTE applies the GTE predicate on the "content" field.
func ContentGTE(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldContent), v))
})
}
// ContentLT applies the LT predicate on the "content" field.
func ContentLT(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldContent), v))
})
}
// ContentLTE applies the LTE predicate on the "content" field.
func ContentLTE(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldContent), v))
})
}
// ContentContains applies the Contains predicate on the "content" field.
func ContentContains(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.Contains(s.C(FieldContent), v))
})
}
// ContentHasPrefix applies the HasPrefix predicate on the "content" field.
func ContentHasPrefix(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.HasPrefix(s.C(FieldContent), v))
})
}
// ContentHasSuffix applies the HasSuffix predicate on the "content" field.
func ContentHasSuffix(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.HasSuffix(s.C(FieldContent), v))
})
}
// ContentEqualFold applies the EqualFold predicate on the "content" field.
func ContentEqualFold(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EqualFold(s.C(FieldContent), v))
})
}
// ContentContainsFold applies the ContainsFold predicate on the "content" field.
func ContentContainsFold(v string) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.ContainsFold(s.C(FieldContent), v))
})
}
// CreatedAtEQ applies the EQ predicate on the "created_at" field.
func CreatedAtEQ(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldCreatedAt), v))
})
}
// CreatedAtNEQ applies the NEQ predicate on the "created_at" field.
func CreatedAtNEQ(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldCreatedAt), v))
})
}
// CreatedAtIn applies the In predicate on the "created_at" field.
func CreatedAtIn(vs ...time.Time) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldCreatedAt), v...))
})
}
// CreatedAtNotIn applies the NotIn predicate on the "created_at" field.
func CreatedAtNotIn(vs ...time.Time) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldCreatedAt), v...))
})
}
// CreatedAtGT applies the GT predicate on the "created_at" field.
func CreatedAtGT(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldCreatedAt), v))
})
}
// CreatedAtGTE applies the GTE predicate on the "created_at" field.
func CreatedAtGTE(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldCreatedAt), v))
})
}
// CreatedAtLT applies the LT predicate on the "created_at" field.
func CreatedAtLT(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldCreatedAt), v))
})
}
// CreatedAtLTE applies the LTE predicate on the "created_at" field.
func CreatedAtLTE(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldCreatedAt), v))
})
}
// UpdatedAtEQ applies the EQ predicate on the "updated_at" field.
func UpdatedAtEQ(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtNEQ applies the NEQ predicate on the "updated_at" field.
func UpdatedAtNEQ(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtIn applies the In predicate on the "updated_at" field.
func UpdatedAtIn(vs ...time.Time) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldUpdatedAt), v...))
})
}
// UpdatedAtNotIn applies the NotIn predicate on the "updated_at" field.
func UpdatedAtNotIn(vs ...time.Time) predicate.Comment {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Comment(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldUpdatedAt), v...))
})
}
// UpdatedAtGT applies the GT predicate on the "updated_at" field.
func UpdatedAtGT(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtGTE applies the GTE predicate on the "updated_at" field.
func UpdatedAtGTE(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtLT applies the LT predicate on the "updated_at" field.
func UpdatedAtLT(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtLTE applies the LTE predicate on the "updated_at" field.
func UpdatedAtLTE(v time.Time) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldUpdatedAt), v))
})
}
// HasPost applies the HasEdge predicate on the "post" edge.
func HasPost() predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(PostTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, true, PostTable, PostColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasPostWith applies the HasEdge predicate on the "post" edge with a given conditions (other predicates).
func HasPostWith(preds ...predicate.Article) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(PostInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, true, PostTable, PostColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Comment) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Comment) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Comment) predicate.Comment {
return predicate.Comment(func(s *sql.Selector) {
p(s.Not())
})
}