You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
kratos/third_party/google/cloud/automl/v1beta1/model_evaluation.proto

105 lines
4.4 KiB

// Copyright 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
syntax = "proto3";
package google.cloud.automl.v1beta1;
import "google/api/annotations.proto";
import "google/cloud/automl/v1beta1/classification.proto";
import "google/cloud/automl/v1beta1/detection.proto";
import "google/cloud/automl/v1beta1/regression.proto";
import "google/cloud/automl/v1beta1/tables.proto";
import "google/cloud/automl/v1beta1/text_extraction.proto";
import "google/cloud/automl/v1beta1/text_sentiment.proto";
import "google/cloud/automl/v1beta1/translation.proto";
import "google/protobuf/timestamp.proto";
option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
option java_multiple_files = true;
option java_package = "com.google.cloud.automl.v1beta1";
option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
// Evaluation results of a model.
message ModelEvaluation {
// Output only. Problem type specific evaluation metrics.
oneof metrics {
// Model evaluation metrics for image, text, video and tables
// classification.
// Tables problem is considered a classification when the target column
// has either CATEGORY or ARRAY(CATEGORY) DataType.
ClassificationEvaluationMetrics classification_evaluation_metrics = 8;
// Model evaluation metrics for Tables regression.
// Tables problem is considered a regression when the target column
// has FLOAT64 DataType.
RegressionEvaluationMetrics regression_evaluation_metrics = 24;
// Model evaluation metrics for translation.
TranslationEvaluationMetrics translation_evaluation_metrics = 9;
// Model evaluation metrics for image object detection.
ImageObjectDetectionEvaluationMetrics image_object_detection_evaluation_metrics = 12;
// Evaluation metrics for text sentiment models.
TextSentimentEvaluationMetrics text_sentiment_evaluation_metrics = 11;
// Evaluation metrics for text extraction models.
TextExtractionEvaluationMetrics text_extraction_evaluation_metrics = 13;
}
// Output only.
// Resource name of the model evaluation.
// Format:
//
// `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
string name = 1;
// Output only.
// The ID of the annotation spec that the model evaluation applies to. The
// The ID is empty for the overall model evaluation.
// For Tables classification these are the distinct values of the target
// column at the moment of the evaluation; for this problem annotation specs
// in the dataset do not exist.
// NOTE: Currently there is no way to obtain the display_name of the
// annotation spec from its ID. To see the display_names, review the model
// evaluations in the UI.
string annotation_spec_id = 2;
// Output only. The value of [AnnotationSpec.display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] when the model
// was trained. Because this field returns a value at model training time,
// for different models trained using the same dataset, the returned value
// could be different as model owner could update the display_name between
// any two model training.
// The display_name is empty for the overall model evaluation.
string display_name = 15;
// Output only.
// Timestamp when this model evaluation was created.
google.protobuf.Timestamp create_time = 5;
// Output only.
// The number of examples used for model evaluation, i.e. for
// which ground truth from time of model creation is compared against the
// predicted annotations created by the model.
// For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is
// the total number of all examples used for evaluation.
// Otherwise, this is the count of examples that according to the ground
// truth were annotated by the
//
// [annotation_spec_id][google.cloud.automl.v1beta1.ModelEvaluation.annotation_spec_id].
int32 evaluated_example_count = 6;
}