You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
6.1 KiB
241 lines
6.1 KiB
// Copyright 2017 Google Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
syntax = "proto3";
|
|
|
|
package google.cloud.ml.v1;
|
|
|
|
import "google/api/annotations.proto";
|
|
import "google/api/httpbody.proto";
|
|
|
|
option go_package = "google.golang.org/genproto/googleapis/cloud/ml/v1;ml";
|
|
option java_multiple_files = true;
|
|
option java_outer_classname = "PredictionServiceProto";
|
|
option java_package = "com.google.cloud.ml.api.v1";
|
|
|
|
// Copyright 2017 Google Inc. All Rights Reserved.
|
|
//
|
|
// Proto file for the Google Cloud Machine Learning Engine.
|
|
// Describes the online prediction service.
|
|
|
|
// The Prediction API, which serves predictions for models managed by
|
|
// ModelService.
|
|
service OnlinePredictionService {
|
|
// Performs prediction on the data in the request.
|
|
//
|
|
// **** REMOVE FROM GENERATED DOCUMENTATION
|
|
rpc Predict(PredictRequest) returns (google.api.HttpBody) {
|
|
option (google.api.http) = {
|
|
post: "/v1/{name=projects/**}:predict"
|
|
body: "*"
|
|
};
|
|
}
|
|
}
|
|
|
|
// Request for predictions to be issued against a trained model.
|
|
//
|
|
// The body of the request is a single JSON object with a single top-level
|
|
// field:
|
|
//
|
|
// <dl>
|
|
// <dt>instances</dt>
|
|
// <dd>A JSON array containing values representing the instances to use for
|
|
// prediction.</dd>
|
|
// </dl>
|
|
//
|
|
// The structure of each element of the instances list is determined by your
|
|
// model's input definition. Instances can include named inputs or can contain
|
|
// only unlabeled values.
|
|
//
|
|
// Not all data includes named inputs. Some instances will be simple
|
|
// JSON values (boolean, number, or string). However, instances are often lists
|
|
// of simple values, or complex nested lists. Here are some examples of request
|
|
// bodies:
|
|
//
|
|
// CSV data with each row encoded as a string value:
|
|
// <pre>
|
|
// {"instances": ["1.0,true,\\"x\\"", "-2.0,false,\\"y\\""]}
|
|
// </pre>
|
|
// Plain text:
|
|
// <pre>
|
|
// {"instances": ["the quick brown fox", "la bruja le dio"]}
|
|
// </pre>
|
|
// Sentences encoded as lists of words (vectors of strings):
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// ["the","quick","brown"],
|
|
// ["la","bruja","le"],
|
|
// ...
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// Floating point scalar values:
|
|
// <pre>
|
|
// {"instances": [0.0, 1.1, 2.2]}
|
|
// </pre>
|
|
// Vectors of integers:
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// [0, 1, 2],
|
|
// [3, 4, 5],
|
|
// ...
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// Tensors (in this case, two-dimensional tensors):
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// [
|
|
// [0, 1, 2],
|
|
// [3, 4, 5]
|
|
// ],
|
|
// ...
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// Images can be represented different ways. In this encoding scheme the first
|
|
// two dimensions represent the rows and columns of the image, and the third
|
|
// contains lists (vectors) of the R, G, and B values for each pixel.
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// [
|
|
// [
|
|
// [138, 30, 66],
|
|
// [130, 20, 56],
|
|
// ...
|
|
// ],
|
|
// [
|
|
// [126, 38, 61],
|
|
// [122, 24, 57],
|
|
// ...
|
|
// ],
|
|
// ...
|
|
// ],
|
|
// ...
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// JSON strings must be encoded as UTF-8. To send binary data, you must
|
|
// base64-encode the data and mark it as binary. To mark a JSON string
|
|
// as binary, replace it with a JSON object with a single attribute named `b64`:
|
|
// <pre>{"b64": "..."} </pre>
|
|
// For example:
|
|
//
|
|
// Two Serialized tf.Examples (fake data, for illustrative purposes only):
|
|
// <pre>
|
|
// {"instances": [{"b64": "X5ad6u"}, {"b64": "IA9j4nx"}]}
|
|
// </pre>
|
|
// Two JPEG image byte strings (fake data, for illustrative purposes only):
|
|
// <pre>
|
|
// {"instances": [{"b64": "ASa8asdf"}, {"b64": "JLK7ljk3"}]}
|
|
// </pre>
|
|
// If your data includes named references, format each instance as a JSON object
|
|
// with the named references as the keys:
|
|
//
|
|
// JSON input data to be preprocessed:
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// {
|
|
// "a": 1.0,
|
|
// "b": true,
|
|
// "c": "x"
|
|
// },
|
|
// {
|
|
// "a": -2.0,
|
|
// "b": false,
|
|
// "c": "y"
|
|
// }
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// Some models have an underlying TensorFlow graph that accepts multiple input
|
|
// tensors. In this case, you should use the names of JSON name/value pairs to
|
|
// identify the input tensors, as shown in the following exmaples:
|
|
//
|
|
// For a graph with input tensor aliases "tag" (string) and "image"
|
|
// (base64-encoded string):
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// {
|
|
// "tag": "beach",
|
|
// "image": {"b64": "ASa8asdf"}
|
|
// },
|
|
// {
|
|
// "tag": "car",
|
|
// "image": {"b64": "JLK7ljk3"}
|
|
// }
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// For a graph with input tensor aliases "tag" (string) and "image"
|
|
// (3-dimensional array of 8-bit ints):
|
|
// <pre>
|
|
// {
|
|
// "instances": [
|
|
// {
|
|
// "tag": "beach",
|
|
// "image": [
|
|
// [
|
|
// [138, 30, 66],
|
|
// [130, 20, 56],
|
|
// ...
|
|
// ],
|
|
// [
|
|
// [126, 38, 61],
|
|
// [122, 24, 57],
|
|
// ...
|
|
// ],
|
|
// ...
|
|
// ]
|
|
// },
|
|
// {
|
|
// "tag": "car",
|
|
// "image": [
|
|
// [
|
|
// [255, 0, 102],
|
|
// [255, 0, 97],
|
|
// ...
|
|
// ],
|
|
// [
|
|
// [254, 1, 101],
|
|
// [254, 2, 93],
|
|
// ...
|
|
// ],
|
|
// ...
|
|
// ]
|
|
// },
|
|
// ...
|
|
// ]
|
|
// }
|
|
// </pre>
|
|
// If the call is successful, the response body will contain one prediction
|
|
// entry per instance in the request body. If prediction fails for any
|
|
// instance, the response body will contain no predictions and will contian
|
|
// a single error entry instead.
|
|
message PredictRequest {
|
|
// Required. The resource name of a model or a version.
|
|
//
|
|
// Authorization: requires `Viewer` role on the parent project.
|
|
string name = 1;
|
|
|
|
//
|
|
// Required. The prediction request body.
|
|
google.api.HttpBody http_body = 2;
|
|
}
|
|
|