You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
kratos/third_party/google/cloud/language/v1/language.tests.yaml

123 lines
3.8 KiB

test:
suites:
- name: Natural Language V1
cases:
- name: Analyze Syntax
spec:
- call: {sample: language_syntax_text}
- assert_contains:
- literal: "Text: This"
- literal: "Text: is"
- literal: "Text: short"
- literal: "Text: sentence"
- literal: "Text: ."
- name: Analyze Syntax – GCS
spec:
- call:
sample: language_syntax_gcs
- assert_contains:
- literal: "Text: This"
- literal: "Text: is"
- literal: "Text: short"
- literal: "Text: sentence"
- literal: "Text: ."
- name: Analyze Sentiment
spec:
- call: {sample: language_sentiment_text}
- assert_contains:
# Default message should return positive: 'I am so happy and joyful'
- literal: "Sentiment score: 0."
- literal: "Magnitude: 0."
- name: Analyze Sentiment – Negative
spec:
- call:
sample: language_sentiment_text
params:
text_content:
literal: "I am so sad and upset."
- assert_contains:
- literal: "Sentiment score: -0."
- literal: "Magnitude: 0."
- name: Analyze Sentiment – GCS
spec:
- call: {sample: language_sentiment_gcs}
- assert_contains:
# Default message should return positive: 'I am so happy and joyful'
- literal: "Sentiment score: 0."
- literal: "Magnitude: 0."
- name: Analyze Sentiment – GCS – Negative
spec:
- call:
sample: language_sentiment_gcs
params:
gcs_uri:
literal: "gs://cloud-samples-data/language/sentiment-negative.txt"
- assert_contains:
- literal: "Sentiment score: -0."
- literal: "Magnitude: 0."
- name: Analyze Entities
spec:
- call: {sample: language_entities_text}
- assert_contains:
- literal: "Entity name: California"
- literal: "Entity salience score: 1"
- literal: "Mention: California"
- literal: "Mention: state"
- name: Analyze Entities – GCS
spec:
- call: {sample: language_entities_gcs}
- assert_contains:
- literal: "Entity name: California"
- literal: "Entity salience score: 1"
- literal: "Mention: California"
- literal: "Mention: state"
- name: Analyze Entity Sentiment
spec:
- call: {sample: language_entity_sentiment_text}
- assert_contains:
- literal: "Entity name: Grapes"
- literal: "Entity sentiment score: 0."
- literal: "Mention: Grapes"
- literal: "Mention sentiment score: 0."
- literal: "Mention sentiment magnitude: 0."
- literal: "Entity name: Bananas"
- literal: "Entity sentiment score: -0."
- literal: "Mention: Bananas"
- literal: "Mention sentiment score: -0."
- name: Analyze Entity Sentiment – GCS
spec:
- call: {sample: language_entity_sentiment_gcs}
- assert_contains:
- literal: "Entity name: Grapes"
- literal: "Entity sentiment score: 0."
- literal: "Mention: Grapes"
- literal: "Mention sentiment score: 0."
- literal: "Mention sentiment magnitude: 0."
- literal: "Entity name: Bananas"
- literal: "Entity sentiment score: -0."
- literal: "Mention: Bananas"
- literal: "Mention sentiment score: -0."
- name: Classify Text
spec:
- call: {sample: language_classify_text}
- assert_contains:
- literal: "Category name: /Arts & Entertainment"
- literal: "Confidence: 0."
- name: Classify Text – GCS
spec:
- call: {sample: language_classify_gcs}
- assert_contains:
- literal: "Category name: /Arts & Entertainment"
- literal: "Confidence: 0."