You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
kratos/third_party/google/cloud/bigquery/v2/model.proto

513 lines
17 KiB

// Copyright 2019 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
syntax = "proto3";
package google.cloud.bigquery.v2;
import "google/cloud/bigquery/v2/model_reference.proto";
import "google/cloud/bigquery/v2/standard_sql.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";
import "google/api/annotations.proto";
option go_package = "google.golang.org/genproto/googleapis/cloud/bigquery/v2;bigquery";
option java_outer_classname = "ModelProto";
option java_package = "com.google.cloud.bigquery.v2";
service ModelService {
// Gets the specified model resource by model ID.
rpc GetModel(GetModelRequest) returns (Model) {
}
// Lists all models in the specified dataset. Requires the READER dataset
// role.
rpc ListModels(ListModelsRequest) returns (ListModelsResponse) {
}
// Patch specific fields in the specified model.
rpc PatchModel(PatchModelRequest) returns (Model) {
}
// Deletes the model specified by modelId from the dataset.
rpc DeleteModel(DeleteModelRequest) returns (google.protobuf.Empty) {
}
}
message Model {
// Evaluation metrics for regression models.
message RegressionMetrics {
// Mean absolute error.
google.protobuf.DoubleValue mean_absolute_error = 1;
// Mean squared error.
google.protobuf.DoubleValue mean_squared_error = 2;
// Mean squared log error.
google.protobuf.DoubleValue mean_squared_log_error = 3;
// Median absolute error.
google.protobuf.DoubleValue median_absolute_error = 4;
// R^2 score.
google.protobuf.DoubleValue r_squared = 5;
}
// Aggregate metrics for classification models. For multi-class models,
// the metrics are either macro-averaged: metrics are calculated for each
// label and then an unweighted average is taken of those values or
// micro-averaged: the metric is calculated globally by counting the total
// number of correctly predicted rows.
message AggregateClassificationMetrics {
// Precision is the fraction of actual positive predictions that had
// positive actual labels. For multiclass this is a macro-averaged
// metric treating each class as a binary classifier.
google.protobuf.DoubleValue precision = 1;
// Recall is the fraction of actual positive labels that were given a
// positive prediction. For multiclass this is a macro-averaged metric.
google.protobuf.DoubleValue recall = 2;
// Accuracy is the fraction of predictions given the correct label. For
// multiclass this is a micro-averaged metric.
google.protobuf.DoubleValue accuracy = 3;
// Threshold at which the metrics are computed. For binary
// classification models this is the positive class threshold.
// For multi-class classfication models this is the confidence
// threshold.
google.protobuf.DoubleValue threshold = 4;
// The F1 score is an average of recall and precision. For multiclass
// this is a macro-averaged metric.
google.protobuf.DoubleValue f1_score = 5;
// Logarithmic Loss. For multiclass this is a macro-averaged metric.
google.protobuf.DoubleValue log_loss = 6;
// Area Under a ROC Curve. For multiclass this is a macro-averaged
// metric.
google.protobuf.DoubleValue roc_auc = 7;
}
// Evaluation metrics for binary classification models.
message BinaryClassificationMetrics {
// Confusion matrix for binary classification models.
message BinaryConfusionMatrix {
// Threshold value used when computing each of the following metric.
google.protobuf.DoubleValue positive_class_threshold = 1;
// Number of true samples predicted as true.
google.protobuf.Int64Value true_positives = 2;
// Number of false samples predicted as true.
google.protobuf.Int64Value false_positives = 3;
// Number of true samples predicted as false.
google.protobuf.Int64Value true_negatives = 4;
// Number of false samples predicted as false.
google.protobuf.Int64Value false_negatives = 5;
// Aggregate precision.
google.protobuf.DoubleValue precision = 6;
// Aggregate recall.
google.protobuf.DoubleValue recall = 7;
}
// Aggregate classification metrics.
AggregateClassificationMetrics aggregate_classification_metrics = 1;
// Binary confusion matrix at multiple thresholds.
repeated BinaryConfusionMatrix binary_confusion_matrix_list = 2;
}
// Evaluation metrics for multi-class classification models.
message MultiClassClassificationMetrics {
// Confusion matrix for multi-class classification models.
message ConfusionMatrix {
// A single entry in the confusion matrix.
message Entry {
// The predicted label. For confidence_threshold > 0, we will
// also add an entry indicating the number of items under the
// confidence threshold.
string predicted_label = 1;
// Number of items being predicted as this label.
google.protobuf.Int64Value item_count = 2;
}
// A single row in the confusion matrix.
message Row {
// The original label of this row.
string actual_label = 1;
// Info describing predicted label distribution.
repeated Entry entries = 2;
}
// Confidence threshold used when computing the entries of the
// confusion matrix.
google.protobuf.DoubleValue confidence_threshold = 1;
// One row per actual label.
repeated Row rows = 2;
}
// Aggregate classification metrics.
AggregateClassificationMetrics aggregate_classification_metrics = 1;
// Confusion matrix at different thresholds.
repeated ConfusionMatrix confusion_matrix_list = 2;
}
// Evaluation metrics for clustering models.
message ClusteringMetrics {
// Davies-Bouldin index.
google.protobuf.DoubleValue davies_bouldin_index = 1;
// Mean of squared distances between each sample to its cluster centroid.
google.protobuf.DoubleValue mean_squared_distance = 2;
}
// Evaluation metrics of a model. These are either computed on all
// training data or just the eval data based on whether eval data was used
// during training.
message EvaluationMetrics {
oneof metrics {
// Populated for regression models.
RegressionMetrics regression_metrics = 1;
// Populated for binary classification models.
BinaryClassificationMetrics binary_classification_metrics = 2;
// Populated for multi-class classification models.
MultiClassClassificationMetrics multi_class_classification_metrics = 3;
// [Beta] Populated for clustering models.
ClusteringMetrics clustering_metrics = 4;
}
}
// Information about a single training query run for the model.
message TrainingRun {
message TrainingOptions {
// The maximum number of iterations in training.
int64 max_iterations = 1;
// Type of loss function used during training run.
LossType loss_type = 2;
// Learning rate in training.
double learn_rate = 3;
// L1 regularization coefficient.
google.protobuf.DoubleValue l1_regularization = 4;
// L2 regularization coefficient.
google.protobuf.DoubleValue l2_regularization = 5;
// When early_stop is true, stops training when accuracy improvement is
// less than 'min_relative_progress'.
google.protobuf.DoubleValue min_relative_progress = 6;
// Whether to train a model from the last checkpoint.
google.protobuf.BoolValue warm_start = 7;
// Whether to stop early when the loss doesn't improve significantly
// any more (compared to min_relative_progress).
google.protobuf.BoolValue early_stop = 8;
// Name of input label columns in training data.
repeated string input_label_columns = 9;
// The data split type for training and evaluation, e.g. RANDOM.
DataSplitMethod data_split_method = 10;
// The fraction of evaluation data over the whole input data. The rest
// of data will be used as training data. The format should be double.
// Accurate to two decimal places.
// Default value is 0.2.
double data_split_eval_fraction = 11;
// The column to split data with. This column won't be used as a
// feature.
// 1. When data_split_method is CUSTOM, the corresponding column should
// be boolean. The rows with true value tag are eval data, and the false
// are training data.
// 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
// rows (from smallest to largest) in the corresponding column are used
// as training data, and the rest are eval data. It respects the order
// in Orderable data types:
// https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
string data_split_column = 12;
// The strategy to determine learning rate.
LearnRateStrategy learn_rate_strategy = 13;
// Specifies the initial learning rate for line search to start at.
double initial_learn_rate = 16;
// Weights associated with each label class, for rebalancing the
// training data.
map<string, double> label_class_weights = 17;
// [Beta] Distance type for clustering models.
DistanceType distance_type = 20;
// [Beta] Number of clusters for clustering models.
int64 num_clusters = 21;
}
// Information about a single iteration of the training run.
message IterationResult {
// Information about a single cluster for clustering model.
message ClusterInfo {
// Centroid id.
int64 centroid_id = 1;
// Cluster radius, the average distance from centroid
// to each point assigned to the cluster.
google.protobuf.DoubleValue cluster_radius = 2;
// Cluster size, the total number of points assigned to the cluster.
google.protobuf.Int64Value cluster_size = 3;
}
// Index of the iteration, 0 based.
google.protobuf.Int32Value index = 1;
// Time taken to run the iteration in milliseconds.
google.protobuf.Int64Value duration_ms = 4;
// Loss computed on the training data at the end of iteration.
google.protobuf.DoubleValue training_loss = 5;
// Loss computed on the eval data at the end of iteration.
google.protobuf.DoubleValue eval_loss = 6;
// Learn rate used for this iteration.
double learn_rate = 7;
// [Beta] Information about top clusters for clustering models.
repeated ClusterInfo cluster_infos = 8;
}
// Options that were used for this training run, includes
// user specified and default options that were used.
TrainingOptions training_options = 1;
// The start time of this training run.
google.protobuf.Timestamp start_time = 8;
// Output of each iteration run, results.size() <= max_iterations.
repeated IterationResult results = 6;
// The evaluation metrics over training/eval data that were computed at the
// end of training.
EvaluationMetrics evaluation_metrics = 7;
}
// Indicates the type of the Model.
enum ModelType {
MODEL_TYPE_UNSPECIFIED = 0;
// Linear regression model.
LINEAR_REGRESSION = 1;
// Logistic regression model.
LOGISTIC_REGRESSION = 2;
// [Beta] K-means clustering model.
KMEANS = 3;
}
// Loss metric to evaluate model training performance.
enum LossType {
LOSS_TYPE_UNSPECIFIED = 0;
// Mean squared loss, used for linear regression.
MEAN_SQUARED_LOSS = 1;
// Mean log loss, used for logistic regression.
MEAN_LOG_LOSS = 2;
}
// Distance metric used to compute the distance between two points.
enum DistanceType {
DISTANCE_TYPE_UNSPECIFIED = 0;
// Eculidean distance.
EUCLIDEAN = 1;
// Cosine distance.
COSINE = 2;
}
// Indicates the method to split input data into multiple tables.
enum DataSplitMethod {
DATA_SPLIT_METHOD_UNSPECIFIED = 0;
// Splits data randomly.
RANDOM = 1;
// Splits data with the user provided tags.
CUSTOM = 2;
// Splits data sequentially.
SEQUENTIAL = 3;
// Data split will be skipped.
NO_SPLIT = 4;
// Splits data automatically: Uses NO_SPLIT if the data size is small.
// Otherwise uses RANDOM.
AUTO_SPLIT = 5;
}
// Indicates the learning rate optimization strategy to use.
enum LearnRateStrategy {
LEARN_RATE_STRATEGY_UNSPECIFIED = 0;
// Use line search to determine learning rate.
LINE_SEARCH = 1;
// Use a constant learning rate.
CONSTANT = 2;
}
// Output only. A hash of this resource.
string etag = 1;
// Required. Unique identifier for this model.
ModelReference model_reference = 2;
// Output only. The time when this model was created, in millisecs since the
// epoch.
int64 creation_time = 5;
// Output only. The time when this model was last modified, in millisecs
// since the epoch.
int64 last_modified_time = 6;
// [Optional] A user-friendly description of this model.
// @mutable bigquery.models.patch
string description = 12;
// [Optional] A descriptive name for this model.
// @mutable bigquery.models.patch
string friendly_name = 14;
// [Optional] The labels associated with this model. You can use these to
// organize and group your models. Label keys and values can be no longer
// than 63 characters, can only contain lowercase letters, numeric
// characters, underscores and dashes. International characters are allowed.
// Label values are optional. Label keys must start with a letter and each
// label in the list must have a different key.
// @mutable bigquery.models.patch
map<string, string> labels = 15;
// [Optional] The time when this model expires, in milliseconds since the
// epoch. If not present, the model will persist indefinitely. Expired models
// will be deleted and their storage reclaimed. The defaultTableExpirationMs
// property of the encapsulating dataset can be used to set a default
// expirationTime on newly created models.
// @mutable bigquery.models.patch
int64 expiration_time = 16;
// Output only. The geographic location where the model resides. This value
// is inherited from the dataset.
string location = 13;
// Output only. Type of the model resource.
ModelType model_type = 7;
// Output only. Information for all training runs in increasing order of
// start_time.
repeated TrainingRun training_runs = 9;
// Output only. Input feature columns that were used to train this model.
repeated StandardSqlField feature_columns = 10;
// Output only. Label columns that were used to train this model.
// The output of the model will have a “predicted_” prefix to these columns.
repeated StandardSqlField label_columns = 11;
}
message GetModelRequest {
// Project ID of the requested model.
string project_id = 1;
// Dataset ID of the requested model.
string dataset_id = 2;
// Model ID of the requested model.
string model_id = 3;
}
message PatchModelRequest {
// Project ID of the model to patch.
string project_id = 1;
// Dataset ID of the model to patch.
string dataset_id = 2;
// Model ID of the model to patch.
string model_id = 3;
// Patched model.
// Follows patch semantics. Missing fields are not updated. To clear a field,
// explicitly set to default value.
Model model = 4;
}
message DeleteModelRequest {
// Project ID of the model to delete.
string project_id = 1;
// Dataset ID of the model to delete.
string dataset_id = 2;
// Model ID of the model to delete.
string model_id = 3;
}
message ListModelsRequest {
// Project ID of the models to list.
string project_id = 1;
// Dataset ID of the models to list.
string dataset_id = 2;
// The maximum number of results per page.
google.protobuf.UInt32Value max_results = 3;
// Page token, returned by a previous call to request the next page of
// results
string page_token = 4;
}
message ListModelsResponse {
// Models in the requested dataset. Only the following fields are populated:
// model_reference, model_type, creation_time, last_modified_time and
// labels.
repeated Model models = 1;
// A token to request the next page of results.
string next_page_token = 2;
}