test:
  suites:
  - name: Natural Language V1
    cases:

    - name: Analyze Syntax
      spec:
      - call: {sample: language_syntax_text}
      - assert_contains:
        - literal: "Text: This"
        - literal: "Text: is"
        - literal: "Text: short"
        - literal: "Text: sentence"
        - literal: "Text: ."

    - name: Analyze Syntax – GCS
      spec:
      - call:
          sample: language_syntax_gcs
      - assert_contains:
        - literal: "Text: This"
        - literal: "Text: is"
        - literal: "Text: short"
        - literal: "Text: sentence"
        - literal: "Text: ."

    - name: Analyze Sentiment
      spec:
      - call: {sample: language_sentiment_text}
      - assert_contains:
        # Default message should return positive: 'I am so happy and joyful'
        - literal: "Sentiment score: 0."
        - literal: "Magnitude: 0."

    - name: Analyze Sentiment – Negative
      spec:
      - call:
          sample: language_sentiment_text
          params:
            text_content:
              literal: "I am so sad and upset."
      - assert_contains:
        - literal: "Sentiment score: -0."
        - literal: "Magnitude: 0."

    - name: Analyze Sentiment – GCS
      spec:
      - call: {sample: language_sentiment_gcs}
      - assert_contains:
        # Default message should return positive: 'I am so happy and joyful'
        - literal: "Sentiment score: 0."
        - literal: "Magnitude: 0."

    - name: Analyze Sentiment – GCS – Negative
      spec:
      - call:
          sample: language_sentiment_gcs
          params:
            gcs_uri:
              literal: "gs://cloud-samples-data/language/sentiment-negative.txt"
      - assert_contains:
        - literal: "Sentiment score: -0."
        - literal: "Magnitude: 0."

    - name: Analyze Entities
      spec:
      - call: {sample: language_entities_text}
      - assert_contains:
        - literal: "Entity name: California"
        - literal: "Entity salience score: 1"
        - literal: "Mention: California"
        - literal: "Mention: state"

    - name: Analyze Entities – GCS
      spec:
      - call: {sample: language_entities_gcs}
      - assert_contains:
        - literal: "Entity name: California"
        - literal: "Entity salience score: 1"
        - literal: "Mention: California"
        - literal: "Mention: state"

    - name: Analyze Entity Sentiment
      spec:
      - call: {sample: language_entity_sentiment_text}
      - assert_contains:
        - literal: "Entity name: Grapes"
        - literal: "Entity sentiment score: 0."
        - literal: "Mention: Grapes"
        - literal: "Mention sentiment score: 0."
        - literal: "Mention sentiment magnitude: 0."
        - literal: "Entity name: Bananas"
        - literal: "Entity sentiment score: -0."
        - literal: "Mention: Bananas"
        - literal: "Mention sentiment score: -0."

    - name: Analyze Entity Sentiment – GCS
      spec:
      - call: {sample: language_entity_sentiment_gcs}
      - assert_contains:
        - literal: "Entity name: Grapes"
        - literal: "Entity sentiment score: 0."
        - literal: "Mention: Grapes"
        - literal: "Mention sentiment score: 0."
        - literal: "Mention sentiment magnitude: 0."
        - literal: "Entity name: Bananas"
        - literal: "Entity sentiment score: -0."
        - literal: "Mention: Bananas"
        - literal: "Mention sentiment score: -0."

    - name: Classify Text
      spec:
      - call: {sample: language_classify_text}
      - assert_contains:
        - literal: "Category name: /Arts & Entertainment"
        - literal: "Confidence: 0."

    - name: Classify Text – GCS
      spec:
      - call: {sample: language_classify_gcs}
      - assert_contains:
        - literal: "Category name: /Arts & Entertainment"
        - literal: "Confidence: 0."