// Copyright 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // syntax = "proto3"; package google.cloud.automl.v1beta1; import "google/api/annotations.proto"; import "google/cloud/automl/v1beta1/column_spec.proto"; import "google/cloud/automl/v1beta1/data_stats.proto"; import "google/cloud/automl/v1beta1/ranges.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl"; option java_multiple_files = true; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; // Metadata for a dataset used for AutoML Tables. message TablesDatasetMetadata { // Output only. The table_spec_id of the primary table of this dataset. string primary_table_spec_id = 1; // column_spec_id of the primary table's column that should be used as the // training & prediction target. // This column must be non-nullable and have one of following data types // (otherwise model creation will error): // * CATEGORY // * ARRAY(CATEGORY) // * FLOAT64 // Furthermore, if the type is CATEGORY or ARRAY(CATEGORY), then only up to // 40 unique values may exist in that column across all rows, but for // ARRAY(CATEGORY) unique values are counted as elements of the ARRAY (i.e. // following 3 ARRAY-s: [A, B], [A], [B] are counted as having 2 unique // values). // // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string target_column_spec_id = 2; // column_spec_id of the primary table's column that should be used as the // weight column, i.e. the higher the value the more important the row will be // during model training. // Required type: FLOAT64. // Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is // ignored for training. // If not set all rows are assumed to have equal weight of 1. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string weight_column_spec_id = 3; // column_spec_id of the primary table column which specifies a possible ML // use of the row, i.e. the column will be used to split the rows into TRAIN, // VALIDATE and TEST sets. // Required type: STRING. // This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST` // among its values, or only have `TEST`, `UNASSIGNED` values. In the latter // case the rows with `UNASSIGNED` value will be assigned by AutoML. Note // that if a given ml use distribution makes it impossible to create a "good" // model, that call will error describing the issue. // If both this column_spec_id and primary table's time_column_spec_id are not // set, then all rows are treated as `UNASSIGNED`. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string ml_use_column_spec_id = 4; // Output only. Correlations between // // [target_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column], // and other columns of the // // [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]. // Only set if the target column is set. Mapping from other column spec id to // its CorrelationStats with the target column. // This field may be stale, see the stats_update_time field for // for the timestamp at which these stats were last updated. map target_column_correlations = 6; // The most recent timestamp when target_column_correlations field and all // descendant ColumnSpec.data_stats and ColumnSpec.top_correlated_columns // fields were last (re-)generated. Any changes that happened to the dataset // afterwards are not reflected in these fields values. The regeneration // happens in the background on a best effort basis. google.protobuf.Timestamp stats_update_time = 7; } // Model metadata specific to AutoML Tables. message TablesModelMetadata { // Column spec of the dataset's primary table's column the model is // predicting. Snapshotted when model creation started. // Only 3 fields are used: // name - May be set on CreateModel, if it's not then the ColumnSpec // corresponding to the current target_column_spec_id of the dataset // the model is trained from is used. // If neither is set, CreateModel will error. // display_name - Output only. // data_type - Output only. ColumnSpec target_column_spec = 2; // Column specs of the dataset's primary table's columns, on which // the model is trained and which are used as the input for predictions. // The // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // as well as, according to dataset's state upon model creation, // // [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], // and // // [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] // must never be included here. // Only 3 fields are used: // name - May be set on CreateModel, if set only the columns specified are // used, otherwise all primary table's columns (except the ones listed // above) are used for the training and prediction input. // display_name - Output only. // data_type - Output only. repeated ColumnSpec input_feature_column_specs = 3; // Objective function the model is optimizing towards. The training process // creates a model that maximizes/minimizes the value of the objective // function over the validation set. // // The supported optimization objectives depend on the prediction_type. // If the field is not set, a default objective function is used. // // CLASSIFICATION_BINARY: // "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver // operating characteristic (ROC) curve. // "MINIMIZE_LOG_LOSS" - Minimize log loss. // "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. // // CLASSIFICATION_MULTI_CLASS : // "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. // // CLASSIFICATION_MULTI_LABEL: // "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. // // REGRESSION: // "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). // "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). // "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE). // // FORECASTING: // "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). // "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). string optimization_objective = 4; // Output only. Auxiliary information for each of the // input_feature_column_specs, with respect to this particular model. repeated TablesModelColumnInfo tables_model_column_info = 5; // The train budget of creating this model, expressed in milli node hours // i.e. 1,000 value in this field means 1 node hour. // // The training cost of the model will not exceed this budget. The final cost // will be attempted to be close to the budget, though may end up being (even) // noticeably smaller - at the backend's discretion. This especially may // happen when further model training ceases to provide any improvements. // // If the budget is set to a value known to be insufficient to train a // model for the given dataset, the training won't be attempted and // will error. int64 train_budget_milli_node_hours = 6; // Output only. The actual training cost of the model, expressed in milli // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed // to not exceed the train budget. int64 train_cost_milli_node_hours = 7; } // Contains annotation details specific to Tables. message TablesAnnotation { // Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher // value means greater confidence in the returned value. // For // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // of ARRAY(CATEGORY) data type, this is a confidence that one of the values // in the ARRAY would be the provided value. // For // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // of FLOAT64 data type the score is not populated. float score = 1; // Output only. Only populated when // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // has FLOAT64 data type (i.e. for regression predictions). An interval in // which the exactly correct target value has 95% chance to be in. DoubleRange prediction_interval = 4; // The predicted value of the row's // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. // The value depends on the column's DataType: // CATEGORY - the predicted (with the above confidence `score`) CATEGORY // value. // FLOAT64 - the predicted (with the above confidence `score`) FLOAT64 value. // ARRAY(CATEGORY) - CATEGORY value meaning that this value would be in the // ARRAY in that column (with the above confidence `score`). google.protobuf.Value value = 2; // Output only. Auxiliary information for each of the model's // // [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // with respect to this particular prediction. repeated TablesModelColumnInfo tables_model_column_info = 3; } // An information specific to given column and Tables Model, in context // of the Model and the predictions created by it. message TablesModelColumnInfo { // Output only. The name of the ColumnSpec describing the column. Not // populated when this proto is outputted to BigQuery. string column_spec_name = 1; // Output only. The display name of the column (same as the display_name of // its ColumnSpec). string column_display_name = 2; // Output only. // // When given as part of a Model: // Measurement of how much model predictions correctness on the TEST data // depend on values in this column. A value between 0 and 1, higher means // higher influence. These values are normalized - for all input feature // columns of a given model they add to 1. // // When given back by Predict or Batch Predict: // Measurement of how impactful for the prediction returned for the given row // the value in this column was. A value between 0 and 1, higher means larger // impact. These values are normalized - for all input feature columns of a // single predicted row they add to 1. float feature_importance = 3; }