// Copyright 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // syntax = "proto3"; package google.cloud.automl.v1beta1; import "google/api/annotations.proto"; import "google/cloud/automl/v1beta1/text_segment.proto"; option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl"; option java_multiple_files = true; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; // Annotation for identifying spans of text. message TextExtractionAnnotation { // Output only. A confidence estimate between 0.0 and 1.0. A higher value // means greater confidence in correctness of the annotation. float score = 1; // Required. The part of the original text to which this annotation pertains. TextSegment text_segment = 3; } // Model evaluation metrics for text extraction problems. message TextExtractionEvaluationMetrics { // Metrics for a single confidence threshold. message ConfidenceMetricsEntry { // Output only. The confidence threshold value used to compute the metrics. // Only annotations with score of at least this threshold are considered to // be ones the model would return. float confidence_threshold = 1; // Output only. Recall under the given confidence threshold. float recall = 3; // Output only. Precision under the given confidence threshold. float precision = 4; // Output only. The harmonic mean of recall and precision. float f1_score = 5; } // Output only. The Area under precision recall curve metric. float au_prc = 1; // Output only. Metrics that have confidence thresholds. // Precision-recall curve can be derived from it. repeated ConfidenceMetricsEntry confidence_metrics_entries = 2; }